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Summary. In this paper the Lie algebra technique is used to construct 
symmetry functions adapted to the subgroup chain U(7)~  SO(7)~  G2 D 
SO(3) D G, which is one of symmetry group chains appearing in the weak 
ligand field scheme for fN ions. The functions are expressed in terms of the 
Gelfand states. 
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1. Introduction 

In both atomic spectroscopy and ligand field theory it is important to construct 
symmetry functions adapted to a given subgroup chain. In the case of an f-shell, 
one of the subgroup chains is 

U(7) ~ SO(7) ~ G2 ~ so(a )  ~ G. (1) 

This subgroup chain, except for the finite group G, was first introduced by Racah 
[ 1]. In order to construct the symmetry functions Racah defined the coefficient of 
fractional parentage (CFP). Although, by using the Wigner-Eckart theorem, it 
may not be necessary to explicitly construct the symmetry functions in Racah's 
procedure, many-electron reduced matrix elements have to be determined. The 
latter involves complex CFP factors and it therefore requires some rather 
elaborate calculations [2, 3]. Thus, it is advisable to suggest an efficient approach 
different from Racah's. The unitary group approach (UGA) is one of this type. 

In the UGA a completely antisymmetric function is expanded in terms of the 
Gelfand basis rather than Slater determinants. The possibility of the expansion 
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was first pointed out by Moshinsky [4] and used for constructing atomic term 
functions by Hatter [5]. This approach was then extended and developed in 
works of Drake et al. [6, 7], Patterson et al. [8], Kent and Schlesinger [9], and 
Wen [10]. These works, however, did not consider the adaptation to symmetries 
of SO(7) and G2. Thus their approach leads to repetitions of term labellings and 
also requires solution of linear equation sets of high orders. For example, in their 
approach linear equations of  orders of  58 and 48 respectively must be solved in 
order to obtain 10 2F and 10 2G term functions of a n f  7 system. Orders of linear 
equation sets and repetitions of term labellings will be greatly reduced if the 
symmetry adaption to SO(7) and (72 is taken into account. The aim of this paper 
is to develop an algebraic technique for producing symmetry adapted term 
functions, i.e. the functions adapted to the group chain (1). We shall use the 
triplets of an f4 system to illustrate the method. 

2. Notations 

Since the GUA has been discussed in detail in [11, 12] we only cite some 
useful notation and conclusions from these references. The basic brick of the 
GUA is the Gelfand basis, the canonical basis set for U(n) irreducible repre- 
sentation (irrep). There are a number of schemes to label a Gelfand state. 
For systems of electrons a concise labelling is Paldus' A B C  tableau, an n x 3 
integer matrix, in which A = [a., an_, . . . . .  al] +, B = [b., b._ 1 . . . .  , b,] + and 
C =- [c., c._ 1 . . . . .  c1] +, where a~, br and c~ record the number of orbitals which 
are doubly-, singly- and un-occupied in the first r orbitals. A more concise 
labelling is the step vector I(dr)) - [ ( d t d z " "  d . ) ) ,  where dr (called step number) 
is defined as 

dr = 3Aa, + Abe. (2) 

Here 

and 

Aar = ar - a r  _ 1 ,  

Abr = b ~ - b ~ _ l ,  r = 1, 2 , . . . , n  (3) 

a0 = bo = 0. 

Another important concept in the GUA is the generator E o, which satisfies 
the commutation relation, 

[E o, Ek,] = 6jkEu - -  6 i l E k j .  (4) 

Under action of a generator Eo., a Gelfand state is transformed according to 

eol(ur)> = Z I(a;)><(a;)Ig;jl(ar)>. (5) 
(a;) 

Duch and Karwowski [ 13], Robb and Niazi [ 14] and one of the authors [ 15] have 
suggested some algorithms by which the states appearing in the right-hand side 
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of Eq. (5) can be easily found. In this paper we only need the Paldus formula for 
elementary generators Er+ 1,r and Er, ,+,  [16]. We may rewrite the Paldus 
formula as follows: 

Er+ 1, r I (d l  . . . . .  dr, dr+l . . . . .  an)> 

I br(br + 1) -1 '/2 
= (br_  7B 7, + 1)j I(d' . . . . .  d,  - l, dr+, + 1 , . . . ,  d,)> 

[ (b,+l)(br+2) ] m 
+ (br_, + 1)(b,+ ~ + 1) [(dl . . . . .  d , - 2 ,  dr+~ + 2  . . . . .  d , ) ) .  (6) 

It can be verified that the first term is different from zero if drd~+, = 10, 12, 32 
and 30, and the second one is different from zero if drdr+ ~ = 20, 21, 31 and 30. 

The one-electron functions used in this paper are [3m), where m = 3, 2, 1, 0, 
- 1, - 2, and - 3 correspond, respectively, to the orbital index i = 1, 2 , . . . ,  7. 
The Gelfand states of U(7) can be built from these orbitals, but we do not need 
their explicit form. The generators of U(7) are Eq (i,j = 1 , . . . ,  7). 

3. Algebraic bases of SO(7), (72 and SO(3) 

In this section, we shall choose linear combinations of E U to construct generators 
of SO(7), G2 and SO(3). These generators serve as algebraic bases of the groups. 
As is well known [17], SO(7), Ga and SO(3) are semisimple Lie groups and their 
generators form corresponding semisimple algebras. For any semisimple algebra 
there are two kinds of generators: the maximal commuting subalgebra consisting 
of weight operators H = {HI, H E , . . . ,  Hi}, called the Cartan subalgebra, and 
the remaining ones, which are eigenvectors of H;, are called root operators. The 
root operators can be divided according to their eigenvalues or roots ~. The 
dimension l of a Cartan subalgebra is called the rank of the semisimple algebra. 
The ranks of SO(7), G2 and SO(3) are 3, 2 and 1, respectively. Dynkin [18] has 
proved that in the root set of a semisimple algebra there is a subset of exactly 
1 roots, in terms of which a root can be expressed as 

1 

= E kj~j, (7) 
j = l  

where kj are all real and rational. A root is said to be positive with respect to a 
chosen basis set aj if the first non-vanishing coefficient in Eq. (7) is positive. 
There are obviously l positive roots, each of which has a coefficient of 1 and the 
other of zero. This is a so-called simple root set. If  the simple root set is chosen 
as the basis the coefficients in Eq. (7) will either be all positive or all negative. 
The simple root set (its dimension, length of each root and the angle made by 
two roots) identifies the semisimple algebra. A diagrammatic classification of 
semisimple algebras has been done by Dynkin [18]. The Dynkin diagrams for 
SO(7) and G 2 a r e  shown in Tables 1 and 2, respectively. 

Now let us find the generators of SO(7), G 2 and SO(3). It should be noted 
that different authors give different definitions of the generators of these groups. 
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Table 1. The algebraic basis o f  SO(7) 

Z. Wen et al. 

Weight operators 

Dynkin diagram 

H 1 = Ell - -  E77 

tt2 =/r22 - E66 

| 
~1 0[2 0~3 

e ~ i  = E l2  + E67 

E,2 = E23 + E56 

E,3 = E34 + E45 

E~, + ~2 = El3 -- E57 

Bet2 + ,3  = ~'24 - -  ~'46 

E~2 + 2~3 = E25 + E36 

gal  +a2+~3 = El4 + E47 

E, ,  + ~t2 + 2~t3 = E l5  - -  E37 

E=, +2~2 +2~3 = El6 + ~F27 

(1, -1,o) 

( o ,  l ,  - l )  

(o, o, 1) 

(1,o, -1) 

(o, 1,o) 

(o, 1, 1) 

(1,o,o) 

(1,o, 1) 

(1, 1,0) 

Table 2. The algebraic basis o f  G 2 

Weight operators 

Dynkin diagram 

H I = Ell + E33 - E55 - E77 

H i  = Ez2 - E33 + E55 - E66 

E ) = O  

E~=E23+E~ (-1,2) 

,Eft = E l 2  .q- ~ 2 E 3 4  -1- ~ 2 E 4 5  -4.- E67 (1 ,  - -  l )  

E , + a =  -E13+x/2E24-x/2E46+E57 (0, 1) 

E ,  + ~p = - ~ / 2 e ~ .  + E ~  + E3~ - ~ / 2 s ~ 7  (1, o) 

E,  + 3# = -- El5 + E37 (2, -- 1) 

g2ct + 3.8 = E l 6  + E27 (1, 1) 

We shall define the generators according to the following principles: (1) The 
generators of a subgroup must be linear combinations of those of  the larger 
group. (2) The weight operators of a subgroup should be so chosen that the 
highest weight state of the largest irrep of the subgroup is also a highest weight 
state of the larger group. We shall explain this point later. (3) The generators 



Symmetry functions 

Table 3. The algebraic basis (generators) of SO(3) 

L~ = 3E n + 2E22 + E33 - E55 - 2E66 - 3E77 

L+ = ~/10(Z23 + E56) + ~/6(Et2 + N/2/34 "~- ~/2E45 + E67 ) 

L = ~/10(E32 + E65) + ~/6(E2, + ~/2E43 + x/2E54 + E76 ) 
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must satisfy the following Cartan-Weyl commutation relations: 

[Hi,/-/j] = 0, l<<.i,j<~i, 

[Hi, E~] = o~,E~, 

(8) 

(9) 

[E,, e ,] = E (10) 

[E~, Ea] = N~,pE~+a. (11) 

The generators satisfying these requirements have been found. They are given in 
Table 1 (SO(7)), Table 2 (G2) and Table 3 (SO(3)). In Tables 1 and 2 the 
eigenvalues ~ (defined in Eq. (8)) are written in parentheses after the corre- 
sponding roots. The negative operators are not given in the tables, but they may 
be easily obtained by replacing the raising generators by corresponding lowering 
generators. It is a good exercise to check lengths of roots, angles between two 
simple roots and so on for these groups, keeping in mind the following definition 
of the scalar product of two roots 

I 
(oq~) = ~ a'~i. (12) 

i = l  

It should be noted that when the check is done for G2, E~, E~ § 3fl and E2~ + 3a 
should be multiplied by ~(3/2)  and Ep, E~+ a and E~+2a by ~(1/2)  to obtain 
true values of lengths and angles. 

It should be noticed that there may be other choices of the generators. For 
example, it can be verified that H i = En + E 2 2 -  E66 - E 7 7  and Hi  = - E 2 2  + 
E33 -- E55 + E66 are equivalent to ours in the sense that the same highest weight 
states are produced, but the labellings will be different. Sviridov et al. [19] and 
Parantonopoulos [20] defined generators of G2 different from ours. In the work 
of Sviridov et al., the weight operators were defined H'~ = E~1 + E2~ - E66 - E 7 7  

and Hi  = Ell - E 2 2  "4- 2E33 - 2E55 + E66 - E77. Parantopoulos's generators are 
then not Cartan-Weyl basis. 

4. Irreps and weight sets of SO('/) and (72 

In the algebraic representation theory of Lie groups, a basis function is usually 
associated with a definite wieght, i.e. the eigenvalue set of the weight operators 
Hi (i = 1 . . . .  , l). The highest weight will be used to label the irrep. In this paper 
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we label irreps of SO(7) with W = (w 1, w 2, w3) and the irreps of G2 with 
U = (u~, u2). For SO(7), suppose that [Ao> is the function of the highest weight, 
then 

Hi[A0> = wi[A0>, i = 1, 2 and 3, (13) 

with the weight operators defined in the last section, and W the standard 
labelling adopted by Racah [ 1]. 

The weights can also be expressed as linear combinations of simple roots. 
Thus we may write the weights of SO(7) as ~ kjc 9 and those of G2 as k,~ + karl; 
these will be used to label rows or states of an irrep. If  we denote the highest 
weight of an irrep of SO(7) as ~ kjo~j, then kjo correlate to w~ by the following 
equations [ 16]: 

kj ~ 2(~j, ~i) (i 1, 2), (14) 
j =  1 (O~D ~ i )  = w i  - -  W i +  1 = 

~ - 2(Ctj,~X3) 
kjo = ~ - - -  2w3- (15) 

j =1 ~3 ,  ~3) 

Similarly if we denote the highest weight of an irrep of G2 as ko~t + kofl, then 
(k~o, kao) can be calculated from the following set of equations: 

-k~o + kpo = ul, (16) 

2k~o - kpo = u2. (17) 

In Figs. 1 and 2 the relation between the two symbols is useful to decide the 
irreps of G2 or SO(3). 

Now let us determine the weight sets of irreps of SO(7) and G2. This is a 
simple task for low-dimensional irreps since the weight sets of SO(7) and G2 
irreps of dimensions smaller than 100 have been published in appendix 1 in 
Cornwell's book [21]. For irreps of  larger dimensions, their weights and corre- 
sponding multiplicities can be obtained by decomposing the Kronecker prod- 
ucts of irreps of lower dimensions. In Tables 4 and 5, all the necessary 
decomposition formulas are displayed. It is easily seen from Table 4 that three 
weight sets must be known to work out the weights and their multiplicities 
appearing in 

Table 4. Kronecker products of SO(7) irreps 

(100) • (100) = (000) + (110) + (200) 
(100) • (110) = (100) +(Il l)  +(210) 
(100) • (Ill) = (110) + ( l i d  + (211) 
(110) x (110) = (000) + (110) +(111) + (211) +(200) +(220) 
(110) • (111) = (I00) + (lI0) +(111) +(210) +(211) +(221) 
(III) • (III) = (000) + (lO0) +(II0) +(III) +(200) +(210) 

+(211) +(220) +(221) +(222) 
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Table 5. Kronecker products of G2 irreps 
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(10) x (10) = (00) + (10) + (11) + (20) 
(10) x (11) = (10) + (20) + (21) 
(10) x (20) =(10) +(11) +(20) +(21) +(30) 
(11) x (11) =(00) +(11) +(20) +(30) +(22) 
(11) x (20) =(10) +(11) +(20) +(21) +(30) +(31) 
(20) x (20) =(00) +(10) +(11) +2(20) +2(21) +(30) +(22) +(31) +(40) 

the f-shell problems. They are 

(100): O, --+~3, __ (o% Jr o%), +_(oq jr oc2 jr ~3 ). 

(110): 0 (3), +--~l,-----~2, +--~ --+(~1+~2),--+(O~2jr~3), jr(~l jr~ jr~ 

+--(~2 jr 20~3), +---(~1 jr ~2 Jr 20~3), ! (~1  Jr 2~2 + 2~3). 

(111): 0 (3), +--~1, -I-~2, ----- 0~(2), +--(~ +~ --(Oq +~3) ,  --+(Oq--(x3), 

+---(0~2 Jr" 0~3) (2), (~2 jr 20(3), "l- (~1 Jr ~2 Jr 0~3) (2), "~- (~1 "Jl- 2~2 jr ~3), 

'Ji- (~1 "3!- ~2 + 2~3), +(~I + 2~2 + 2~3), -+(~l + 2~2 + 3~x3), 

where the superscripts in some weights are their multiplicities. The weight set of 
the irrep (110) is shown in Fig. 1, In this figure a weight (kl~l + k2~2 + k3~3) is 
simply represented by (k~k2k3). Three possible ways of lowering a weight are 
represented by three lines of different slopes. Weights have been graded accord- 
ing to their values of ~ kj. Weights having the same value of ~ k: are located in 
a horizontal level. The vertical line on the left side of the figure has been marked 
with the weights of G2 corresponding to those of S0(7) when the weights are the 
highest. 

(Ii)-- 

(i0)-- 

Fig. 1. The weight set of (110) 
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( 6 ) I -  

(2)D- 

, a  

22 

( 5 ) H -  

l ) P -  

b 
Fig. 2. Weight sets for G 2. (a) The weight set of (20); (b) the weight set of (11) 

For G2, only two weight sets are needed. They are 

(10): 0, +//, +(~ +//), ___(~+2fl), 

(11): 0 (:), +~, +//, +(~+//), +(~ +2//), +(~ +3//), +(2~ +3//). 

As an example, let us work out the weight set of (20). The weight set of the 
Kronecker product (10) x (10) is 

0(7), +~(2), +//~4), +2//, +(~t +//)(4), +(~ +2p)~4), +(~ +3//)(2), 

+(2~ +2p), +(2~ + 3//) ~2), +(2~ +4//). 

From this weight set we may obtain that of the irrep (20) by subtracting the 
weight sets of the irreps (00), (10) and (11) 

(20): 0 (3), -+-~, +//(2), +2//, +(~+//)(2), +(0~ +2//)(z), +(~ +3//), 

__+(2e + 2//), +(2e + 3//), _+(20~ +4//). 

The weight sets of (20) and (11) are shown in Fig. 2. This figure is similar in 
meaning to Fig. 1. Here there are only two possible ways of lowering a weight 
for G2. On the left of the figure the terms included in (20) are indicated. 

5. Symmetry adapted functions 

The functions adapted to group chain (1) are labelled as I WU, ~2~+ ILML> ' where 
W and U stand for SO(7) and G2 irreps, S, L and ML have their common 
meanings, and the additional index ~ identifies irreps repeatedly appearing in 
G2 ~ SO(3). If the adaptation to a finite group is considered, Fy will be introduced 
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into the state labelling to indicate its irrep and row. Symmetry adapted functions 
will be constructed in sequence along the group chain (1). For constructing 
symmetry functions adapted in every continuous group we need to know 

(i) the algebraic basis in terms of U(7) generators, 
(ii) the weight sets of the group, 
(iii) the highest weight functions corresponding to a given irrep. 

Answers to (i) and (ii) have been given in the previous sections. We now consider 
how to establish the highest weight functions. If an irrep of SO(7) or G2 is the 
largest component in the reduction U(7)~  SO(7) or U(7)~  (72, the highest 
weight function belonging to the largest component is easily obtained. The 
largest component here means the irrep of the highest weight presented in 
reductions of irrep of U(7) to that of SO(7). For the largest component, the 
highest weight function of the subgroup is identical with that of the large group. 
If the large group is U(7), the highest weight function consists of only one 
Gelfand state. For example 1(3110000) ) is the highest Gelfand state of [211] of 
U(7), it is therefore the highest weight function for (211) of SO(7) and also the 
highest one for (30) of G2. This can be verified by using the weight operators of 
these groups and Eq. (19). In order to establish the highest weight functions in 
a general case, the first step is to find Gelfand states of the given weight, and 
write the function as 

IAo) = ~ C,l(dr),>. (18) 
i 

Then the coefficients Ci are determined from the highest weight condition, 

E=,IAo> =0, ~, >0. (19) 

The lowest weight function can be similarly established. 
Asherova and Smirnov [22] proposed a very general method of finding the 

highest weight functions for a compact group. They defined the projection 
operator, 

eta1 = 1-1 (2o) 

where [2] was the highest weight and the operator p~l was defined as 
2tF2(~, A + g) ],/2 

1 = L ( - t ) '  ,=o F2(=, A + g) ] E'_=E" (21) 

L + ' ! 
with 

g = 1/2 y, =. (22) 

Although this method has some advantages we find that is it not convenient for 
our purposes. 
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Knowing the highest weight function ]A 0 > = ~ k;0e~ or the lowest weight 
function I - A o ) =  - ~  k~o~, we can construct functions of an arbitrary weight 

kioq from the following formulas: 

o r  

] ~ k,e,)=CEa}g~ E ak2 .. . E ak, A ", 
- -  - -Or 2 - - ~ e  i [ 0 / ,  (23) 

and 

Ak~ = kio + ki. (26) 

If a weight is non-degenerative, only one function is obtained. If it is 
degenerate several independent, but not necessarily orthogonal, functions, can be 
obtained. In the latter case the functions may be orthogonalized. 

Let us now construct the symmetry functions associated with the irrep (110) 
of SO(7) and with some irreps of its subgroups. Suppose (110) comes from the 
reduction of the irrep [211] of U(7). Of the 210 Gelfand states of [211], 6 have 
the weight (110). Taking a linear combination of the 6 states and acting on the 
combination with the raising operators cited in Table 1, we obtain a set of 
equations for the coefficients. Solving them gives the highest weight function 
(here the labellings [211] and (110) have been dropped) 

[(e, + 2~2 + 2~3) > = 1/d511(3100001)>--1( 1300010)> 

+ 2/x/31(1100200) ) + x/6/3 I( 1120100) ) -- I(1103000) )]. (27) 

The other weight functions belonging to (110) can be found from 
](~1--k 2~2-t-2~3)) by means of the lowering operators. For example, 

I(0{1 "Jl" ~2 "31- 2e3)) = E_~x2[(O~l + 2c~2 + 2e3)) 

= 1/x/5113010001 ) + 2x/3/3 [ 1110020 + x/6/611120010) 

-- .4/2/211210010> + 11030100> -- [ 1013000>]. (28) 

The procedure is continued until all the 21 functions of the irrep (110) are 
obtained. The results (only positive weight functions) are given in Table 6, where 
the three functions of weight 0 are defined as 

I0(1)) = 1/x/2E_~llcq) (29) 

[0(2)> = 1/,,/3[ 1/x/2E_= ~ [0~1> - -  x/2E_=zie2)] (30) 

10(3)) = x/2/d3[l/x/2E_~,,l~,>--,,/2E_==l~2>] +~/3s (31) 

I~ i ) (7.'~'~k'1~ ak'2"'" E Ak; -Ao), (24) k ict i = v ~ o t  1 ~ o t  2 oti  

where E~, and E_ =i are raising and lowering operators, respectively. C and C' are 
normalization coefficients, and 

Aki = kio - ki (25) 
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Table 6. The basis functions of (110) 
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I(~, + 2~x 2 + 2%) > = 1/`/5ti 3100001> - 11300010> + 2/.,/311110200> + x/6/3 ] 1120110> - I1103000>1 

](a, + ~2 + 2~3)> = 1/,,/5[ 13010001> + 2`/3/311110020> - `/6/611120010 > - `/2/211210010> 

+ 11030100> - J I013000>1 

I(a~ + ~2 + a3)> = 1/`/5113001001> + 2`/3/311101020> - `/6/611102010> - `/2/211201010> 

- 2`/3/311011200> + `/6/611012100> + `/2/211021100)1 

I(a2 + 2~3)> = 1/`/,/512`/,/3/311110002> - x/6/611120001> + `/,/2/211210001> -10310010> 

+ 10130100> -Io113ooo>1 

1(~2 + ~3)> = 1/`/1012`/6/311101002) + `/3/311102001) + 11201001> - `/210301010 > 

- 2`/6/310111200) + `/3/310112100) + Io1211oo>1 
I(~, + or2) = 1/45113000101) + 243/311100 120) -- ,4/6/611100210) -- `/2/211200110> 

- 1 1 0 1 0 3 0 0 >  +11003100>] 

]~,> = 1/`/5[ 13000011> + I110oo3o> - `/,/6/211010210> - `/2/211020110> + 11003010>1 

1~2> = 1/`/512`/3/311100102> - `/6/611100201> + `/2 + 211200101> - [0300110> -I0110300> 

+ 10103100)] 

I.~> = 1/`/10t2,y6/311011002> - `/3/311012001> + 1021001> - 2`/6/310111020> + `/3/310112010> 

-10121010)  +`/210031100)1 
I0(1)> = 1/`/6012`/211100012 ) + 211100021) + 2`/311200011> - 311010201 ) - ` /311020101)  

+ `/611003001 > - 3 I0110210> - .,/310120110> + `/610103010)] 

10(2)> = 1/`/60[-2`/2/`/311100012> - 4`/2/`/311010102> + 4`/311100021 ) - ,/12/611010201> 

- s11020101> +`/211003001> + 4`/2/`/310110120) +,/12/610110210> + 310120110> 
- ` / 2 1 0 1 0 3 0 1 0 > -  2,/210013100>1 

I00)> = 1/` /60t-4`/3/311100012> + 4`/3/311010102> + 4`/6/311100021> - 4`/6/311010201> 
+ 211003001) - 4`/3/310110120) + 4`/6/3}0110210) - 210103010 ) + 210013100>] 

U n d e r  the r educ t ion  S O ( 7 ) =  Gz, (110) is d e c o m p o s e d  in to  (11) a n d  (10). 
T h e  highest  weight  func t ion  o f  (11) is the  same as tha t  o f  (110),  i.e. 

[(11)(2~ + 3fl)> = 1(~1 + 2a2 + 2~3)>- (32) 

S tar t ing  f r o m  func t ion  (32), basis func t ions  be long ing  to  (11) can  be ob t a ined  by  
app ly ing  the  lower ing  ope ra to r s  o f  G2 to  func t ion  (29). This  p r o c e d u r e  is 
cons ide rab ly  simplified by  the  re la t ion  be tween  o p e r a t o r s  o f  G 2 a n d  those  o f  
SO(7) .  F o r  example ,  

I(11)(~ + 2/~)) = E _ p  I(11)(~ + 3/~)) 

= ( E - ~ I  + x / 2 E - , 3 ) 1 ( ~ ,  + ~2 + 2~s ) )  

= 1 /43[J(~2 + 2~3)> + 4 2 } ( a ,  + ~z + ~3))] .  (33) 
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The other functions can be similarly established. They are given in Table 7. The 
two functions of weight 0 have been orthogonalized and have the forms 

I(ll)0(1)> = 1/.,/2E_, (34) 

I(11)0(2)> = ~/3[ 1/~/2E_, [~> -~/6/3E_ a IB>I. (35) 
The highest weight expressed in simple roots for the component (10) of G2 is also 
equal to (a + 2fl). We have found that the function corresponding this weight is 

I(10)(~ + 2fl)> = 1/~/3[[(~, + ~z + ~3)>-~/21(~2 + 2a3)>1. (36) 

It is obviously orthogonal to l( 11)(~ + 2/~)>. This is the first member of the func- 
tion set spanning the irrep (10) of G2. The other members are given in Table 7. 

We now consider the reduction of Gz to SO(3). L~ can be written as 

Lz = 3H~ + 2//2, (37) 

where H~ and/ /2  are weight operators of G2. This form reminds us that Lz is 
diagonal in the G2, SO(7) and U(7) bases. This result comes, in fact, from our 
choice of the one-electron orbitals. Applying Lz to the function set of (11), we 
obtain the following diagonal matrix elements (see Fig. 2): 

[5,4,3,2, 1, 1, 0, 0, - 1 ,  - 1 ,  - 2 ,  - 3 ,  - 4 ,  -5] .  

This indicates that the terms 3H and 3p are included in the decomposition of (11) 
in accord with the branch rule. The function of ML =5  is equal to 
1(11)(2~ + 3fl)>, which is the starting point for finding all 3H symmetry func- 
tions. The functions, together with those of 3p and 3F (coming from (10) of G2), 
are given in Table 8. 

Table 8. The transformation coefficients of G 2 D SO(3) reduction 

G2 SO(3) 

H P F 

5 4 3 2 1 0 1 0 3 2 1 0 

(11) 
2a + 3[1 

+3// 
+2// 

// 
00) 
0(2) 

1 
I 

1 
3/~14 `/5/`/14 

`/5/x/14 -3 / ` /14  
,/27/,/28 1/,/28 

-- 1/,/28 ,/27/x/28 

(10) 
+2// 

a + / /  
// 
0 

1 
1 
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Finally let us say a few words about the adaptation to a finite group. Kent 
and Schlesinger [23] suggested the method of projection operators for pro- 
ducing symmetry adapted functions of a finite group. We find that their 
projection operators are too complicated when the number of electrons is large. 
We would rather make use of the subduetion coefficients for SO(3) ~ G [24]. 
For example from the subduction coefficients of  SO(3) ~ 0 and from Tables 
6-8  we can write down the symmetry functions of a 7'2 species in an octahe- 
dral field. 

11211](110)(11)3HT20) = 1/6xf301611010003) + an f6  ] 1001012) 

+ 4x//611101002) - 2nf311001021 ) - 3~f610110021 ) 

+ 611002011) + 3x/210120011 ) - 610030101 ) 

+ ]3000101) + 610013001 ) + 2x/311102001) 
+ 611201001) - 6,J2]0101030) + 4x/3] 1100120) 

+ 6x/310011210) - x/6] 1100210) - 610012110) 

- 3x/2] 1200110 ) -6x/210301010)-611010300)  

- 4x/610111200) + 611003100) + 2~/310112100) 

+ 610121100>] ( 3 8 )  

11211](110)(11)3HT21) -- 1/8x/1513x/1011000013) - .,,/10] 1100003) 

- 6x/2 ] 1010012) - 4x/5/x/3 ] 1001102) 

- 2x/21111002)- 3.,/1010100031) + x/5]0001121) 

- 3,,/1010010121) + 311010021 ) + 6x/510010211) 

- 3 , , / 3 1 1 0 2 0 0 1 1 )  - .,,/1010300011) 

- x/10/x/3] 1001201) + x/1510110201) 

- x/lO 11002101) - x / l O  1 0 1 0 3 0 0 1 )  

- 2x/313001001 ) + 11120001) --x/311210001) 

+ 3~/610110030) + 4x/5/x/310101120) - 411101020) 

- x/10/x/310101210) + x/1010102110) 

+ 3x/610030110) - 3x/610013010 ) + x/211102010) 

+ x/6[ 1201010) + x/61o31oolo) - 420100113oo) 

+ 410111200 ) - ~211012100 ) - x/611021100) 

- ,,,/6]0130100) + xf6]0113000)], (39) 
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l[2111(110)(11) 3HT2 - 1) = 1/8~/15[ - 2x/31 lOOlO03) - 2~/21 lO00112) 

- 6x/211100102) - 4x/5/x/3 [ 1011002) 

+ 11000121) + 3x/210101021) -- x/311000211) 

- x/610102011) - ~/1013000011) - 3x/210011201) 

+ 3[ 1100201> + , /610012101)-  3x/3[1200101 ) 

+ x/10/x/311012001) - x/lol lO21OOl) 
+ 3x/1013100001 ) - x/610100130) 

- x / 1 0 1 1 1 0 0 0 3 0 >  + 4,/5/,/310111020> 

- x/610010310) + x/1511010210) + x/610003110) 

+ x/511020110) + 3x/610300110) - .,/1011003010> 

- x/lO/x/3lO112010 ) - ~/1010121010) 

- 3~/1011300010 ) + 3~/610110300) 

+ 2x/3011110200)-  3x/610103100 ) 

-- x/2010031100) + 2x/1511120100) 

-- 3x//lOI 1103000)]. (40) 

6. Discussion 

Constructing symmetry functions adapted to a given group chain is an interest- 
ing and active subject. In this paper the functions adapted to group chain (1) 
have been constructed by the Lie algebra technique and expanded in terms of the 
Gelfand basis. In this approach, except for the trivial cases, the most trouble- 
some step is finding the highest weight states. As a result in order to determine 
the coefficients in Eq. (18), a set of  equations (19) must be solved. If  the 
symmetry adaptation to SO(7) and G2 is not considered, there will be more 
coefficients, and in addition the number of  equations provided only by the 
highest weight condition L+ ILL) = 0 is insufficient to determine the coefficients. 
Zhang suggested [25] that this set of equations can be augmented if the state is 
chosen to be an eigenvector of the Casimir operations of SO(7) and G2. The 
number of  the coefficients does not decrease. For the example mentioned in the 
introduction the 58 coefficients in the linear combination of the Gelfand states 
need to be determined to find 10 states of 12F3). The highest weight conditions 
can only provide 48 equations. The Casimir operators and normalization gives 9 
of the additional 10 needed equations. The fact that one equation is missing is 
associated with the fact that there are two functions of  112221](221)(31)2F3). 
The same feature exists in our approach, though the number of the coefficients 
to be determined is only 13. 
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The  state ILL) can be found  by a p ro jec t ion  ope ra to r ,  say the Lowdir t  
o p e r a t o r  [26], 

e L =  I-I s 1 6 3  
x~L L(L + 1) - K ( K +  1) (41) 

This  m e t h o d  is convenien t  only  when the values o f  K are known.  Ex t ra  q u a n t u m  
n u m b e r  mus t  also be assigned to the states o f  the same L. 

Our  a p p r o a c h  has an add i t iona l  advan t age  tha t  it  a l lows us to calculate  the 
subduc t ion  coefficients- o f  U(7) ~ SO(7),  SO(7)  ~ G2 and  G2 ~ SO(3).  In  o rde r  
to do  this a lit t le more  effort  is requi red  to o r thogona l i ze  the states o f  the same 
weight  which is not  needed  i f  we are only  interested in f inding the te rm funct ions.  
The  values given in Tables  6 - 8  are, in fact,  the subduc t ion  coefficients. Once the 
subduc t ion  coefficients have been found,  we m a y  cons t ruc t  the genera to r  ma-  
trices and  fu r the rmore  calcula te  the CG coefficients o f  SO(7)  and  G 2. W e  shall  
discuss these p rob lems  in fu ture  appl ica t ions .  
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